Maximum Entropy and Probability Kinematics Constrained by Conditionals
نویسنده
چکیده
Two open questions of inductive reasoning are solved: (1) does the principle of maximum entropy (PME) give a solution to the obverse Majerník problem; and (2) is Wagner correct when he claims that Jeffrey’s updating principle (JUP) contradicts PME? Majerník shows that PME provides unique and plausible marginal probabilities, given conditional probabilities. The obverse problem posed here is whether PME also provides such conditional probabilities, given certain marginal probabilities. The theorem developed to solve the obverse Majerník problem demonstrates that in the special case introduced by Wagner PME does not contradict JUP, but elegantly generalizes it and offers a more integrated approach to probability updating.
منابع مشابه
A Generalized Iterative Scaling Algorithm for Maximum Entropy Reasoning in Relational Probabilistic Conditional Logic Under Aggregation Semantics
Recently, different semantics for relational probabilistic conditionals and corresponding maximum entropy (ME) inference operators have been proposed. In this paper, we study the so-called aggregation semantics that covers both notions of a statistical and subjective view. The computation of its inference operator requires the calculation of the ME-distribution satisfying all probabilistic cond...
متن کاملGeneration of Parametrically Uniform Knowledge Bases in a Relational Probabilistic Logic with Maximum Entropy Semantics
In a relational setting, the maximum entropy model of a set of probabilistic conditionals can be defined referring to the full set of ground instances of the conditionals. The logic FO-PCL uses the notion of parametric uniformity to ensure that the full grounding of the conditionals can be avoided, thereby greatly simplifying the maximum entropy model computation. In this paper, we describe a s...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملRelational Probabilistic Conditionals and Their Instantiations under Maximum Entropy Semantics for First-Order Knowledge Bases
For conditional probabilistic knowledge bases with conditionals based on propositional logic, the principle of maximum entropy (ME) is well-established, determining a unique model inductively completing the explicitly given knowledge. On the other hand, there is no general agreement on how to extend the ME principle to relational conditionals containing free variables. In this paper, we focus o...
متن کاملRelational Probabilistic Conditional Reasoning at Maximum Entropy
This paper presents and compares approaches for reasoning with relational probabilistic conditionals, i. e. probabilistic conditionals in a restricted first-order environment. It is well-known that conditionals play a crucial role for default reasoning, however, most formalisms are based on propositional conditionals, which restricts their expressivity. The formalisms discussed in this paper ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015